用Python预测NBA常规赛结果

实验楼

提起「大数据」,你会想到什么?

在很多人脑中,大数据都只是一个模糊的概念;也有人会说,大数据可以用来“预测股市”、“预测地震”、“预测消费者行为”。但其实,大数据与我们的关系可能比想象中得更紧密。

从夜观天象到气象预报,从童话里的水晶球到今日的科技预言家,人类一直希望能够更早突破局限看穿未来,人类的生活也正在被大数据预测深刻改变。

相信你一定知道世界杯中,「章鱼保罗」的传说,但你可能不知道的是,它早已被大数据预测所取代:

世界杯期间,谷歌、百度、微软和高盛等公司都推出了比赛结果预测平台。百度预测结果最为亮眼,预测全程 64 场比赛,准确率为 67%,进入淘汰赛后准确率为 94%。

从经验来看,只要有体育赛事历史数据,并且与指数公司进行合作,便可以进行其他赛事的预测,譬如欧冠、NBA 等赛事。

今天的课程,我们就基于 2015-2016 年的 NBA 常规赛及季后赛的比赛统计数据,预测在当下正在进行的 2016-2017 常规赛每场赛事的结果。

本教程由zyj061发布在实验楼,完整教程、代码及在线练习地址:NBA常规赛结果预测——利用Python进行比赛数据分析(更多课程请查看全部 - 课程 - 实验楼

一、实验介绍

1.1 内容简介

不知道你是否朋友圈被刷屏过nba的某场比赛进度或者结果?或者你就是一个nba狂热粉,比赛中的每个进球,抢断或是逆转压哨球都能让你热血沸腾。除去观赏精彩的比赛过程,我们也同样好奇比赛的结果会是如何。因此本节课程,将给同学们展示如何使用nba比赛的以往统计数据,判断每个球队的战斗力,及预测某场比赛中的结果。

我们将基于2015-2016年的NBA常规赛及季后赛的比赛统计数据,预测在当下正在进行的2016-2017常规赛每场赛事的结果。

1.2 实验知识点

1.3 实验环境

1.4 实验流程

本次课程我们将按照下面的流程实现NBA比赛数据分析的任务:

  1. 获取比赛统计数据
  2. 比赛数据分析,得到代表每场比赛每支队伍状态的特征表达
  3. 利用机器学习方法学习每场比赛与胜利队伍的关系,并对2016-2017的比赛进行预测

1.5 代码获取

本次实验的源码可通过以下命令获得:

$ wget http://labfile.oss.aliyuncs.com/courses/782/prediction.py

二、获取 NBA比赛统计数据

2.1 比赛数据介绍

在本次实验中,我们将采用Basketball Reference.com中的统计数据。在这个网站中,你可以看到不同球员、队伍、赛季和联盟比赛的基本统计数据,如得分,犯规次数等情况,胜负次数等情况。而我们在这里将会使用2015-16 NBA Season Summary中数据。

在这个2015-16总结的所有表格中,我们将使用的是以下三个数据表格:

Rk -- Rank 排名
G -- Games 参与的比赛场数(都为82场)
MP -- Minutes Played 平均每场比赛进行的时间
FG--Field Goals 投球命中次数
FGA--Field Goal Attempts 投射次数
FG%--Field Goal Percentage 投球命中次数
3P--3-Point Field Goals 三分球命中次数
3PA--3-Point Field Goal Attempts 三分球投射次数
3P%--3-Point Field Goal Percentage 三分球命中率
2P--2-Point Field Goals 二分球命中次数
2PA--2-point Field Goal Attempts 二分球投射次数
2P%--2-Point Field Goal Percentage 二分球命中率
FT--Free Throws 罚球命中次数
FTA--Free Throw Attempts 罚球投射次数
FT%--Free Throw Percentage 罚球命中率
ORB--Offensive Rebounds 进攻篮板球
DRB--Defensive Rebounds 防守篮板球
TRB--Total Rebounds 篮板球总数
AST--Assists 辅助
STL--Steals 偷球
BLK -- Blocks 封阻
TOV -- Turnovers 失误
PF -- Personal Fouls 个犯
PTS -- Points 得分

Rk (Rank) 排名
Age 队员的平均年龄
W (Wins) 胜利次数
L (Losses) 失败次数
PW (Pythagorean wins) 基于毕达哥拉斯理论计算的赢的概率
PL (Pythagorean losses) 基于毕达哥拉斯理论计算的输的概率
MOV (Margin of Victory) 赢球次数的平均间隔
SOS (Strength of Schedule) 用以评判对手选择与其球队或是其他球队的难易程度对比,0为平均线,可以为正负数
SRS (Simple Rating System) 3
ORtg (Offensive Rating) 每100个比赛回合中的进攻比例
DRtg (Defensive Rating) 每100个比赛回合中的防守比例
Pace (Pace Factor) 每48分钟内大概会进行多少个回合
FTr (Free Throw Attempt Rate) 罚球次数所占投射次数的比例
3PAr (3-Point Attempt Rate) 三分球投射占投射次数的比例
TS% (True Shooting Percentage) 二分球、三分球和罚球的总共命中率
eFG% (Effective Field Goal Percentage) 有效的投射百分比(含二分球、三分球)
TOV% (Turnover Percentage) 每100场比赛中失误的比例
ORB% (Offensive Rebound Percentage) 球队中平均每个人的进攻篮板的比例
FT/FGA 罚球所占投射的比例
eFG% (Opponent Effective Field Goal Percentage) 对手投射命中比例
TOV% (Opponent Turnover Percentage) 对手的失误比例
DRB% (Defensive Rebound Percentage) 球队平均每个球员的防守篮板比例
FT/FGA (Opponent Free Throws Per Field Goal Attempt) 对手的罚球次数占投射次数的比例

毕达哥拉斯定律: 此处输入图片的描述

我们将用这三个表格来评估球队过去的战斗力,另外还需2015-16 NBA Schedule and Results中的2015~2016年的nba常规赛及季后赛的每场比赛的比赛数据,用以评估Elo score(在之后的实验小节中解释)。在Basketball Reference.com中按照从常规赛至季后赛的时间。列出了2015年10月份至2016年6月份的每场比赛的比赛情况。

可在上图中,看到2015年10月份的部分比赛数据。在每个Schedule表格中所包含的数据为:

Date 比赛日期
Start (ET) 比赛开始时间
Visitor/Neutral 客场作战队伍
PTS 客场队伍最后得分
Home/Neutral 主场队伍
PTS 主场队伍最后得分
Notes 备注,表明是否为加时赛等

在预测时,我们同样也需要在2016-17 NBA Schedule and Results中2016~2017年的NBA的常规赛比赛安排数据。

2.2 获取比赛数据

我们将以获取Team Per Game Stats表格数据为例,展示如何获取这三项统计数据。

  1. 进入到用Basketball Reference.com中,在导航栏中选择Season并选择2015~2016赛季中的Summary:

    此处输入图片的描述

  2. 进入到2015~2016年的Summary界面后,滑动窗口找到Team Per Game Stats表格,并选择左上方的Share & more,在其下拉菜单中选择Get table as CSV (for Excel):

    此处输入图片的描述

  3. 复制在界面中生的的csv格式数据,并复制粘贴至一个文本编辑器保存为csv文件即可:

    此处输入图片的描述

为了方便同学们进行实验,我们已经将数据全部都保存成csv文件上传至实验楼的云环境中。在后续的代码实现小节里,我们将给出获取这些文件的地址。

三、数据分析

在获取到数据之后,我们将利用每支队伍过去的比赛情况和Elo 等级分来判断每支比赛队伍的可胜概率。在评价到每支队伍过去的比赛情况时,我们将使用到Team Per Game Stats,Opponent Per Game Stats和Miscellaneous Stats(之后简称为T、O和M表)这三个表格的数据,作为代表比赛中某支队伍的比赛特征。我们最终将实现针对每场比赛,预测比赛中哪支队伍最终将会获胜,但并不是给出绝对的胜败情况,而是预判胜利的队伍有多大的获胜概率。因此我们将建立一个代表比赛的特征向量。由两支队伍的以往比赛情况统计情况(T、O和M表),和两个队伍各自的Elo等级分构成。

关于Elo score等级分,不知道同学们是否看过《社交网络》这部电影,在这部电影中,Mark(主人公原型就是扎克伯格,FaceBook创始人)在电影起初开发的一个美女排名系统就是利用其好友Eduardo在窗户上写下的排名公式,对不同的女生进行等级制度对比,最后PK出胜利的一方。

这条对比公式就是Elo Score等级分制度。Elo的最初为了提供国际象棋中,更好地对不同的选手进行等级划分。在现在很多的竞技运动或者游戏中都会采取Elo等级分制度对选手或玩家进行等级划分,如足球、篮球、棒球比赛或LOL,DOTA等游戏。

在这里我们将基于国际象棋比赛,大致地介绍下Elo等级划分制度。在上图中Eduardo在窗户上写下的公式就是根据Logistic Distribution计算PK双方(A和B)对各自的胜率期望值计算公式。假设A和B的当前等级分为R_AR​A​​何R_BR​B​​,则A对B的胜率期望值为:

B对A的胜率期望值为

如果棋手A在比赛中的真实得分S_AS​A​​(胜1分,和0.5分,负0分)和他的胜率期望值E_AE​A​​不同,则他的等级分要根据以下公式进行调整:

在国际象棋中,根据等级分的不同K值也会做相应的调整:

因此我们将会用以表示某场比赛数据的特征向量为(加入A与B队比赛):[A队Elo score, A队的T,O和M表统计数据,B队Elo score, B队的T,O和M表统计数据]

四、基于数据进行模型训练和预测

4.1 实验前期准备

在本次实验环境中,我们将会使用到python的pandas,numpy,scipy和sklearn库,不过实验楼中已经安装了numpy,所以在实验前,我们需要先利用pip命令安装另外三个Python库。

$ sudo pip install pandas
$ sudo pip install scipy
$ sudo pip install sklearn

在安装完所需的实验库之后,进入到实验环境的Code目录下,创建cs_782文件夹,并且通过以下地址获取我们为大家处理好的csv文件压缩包data.zip:

$ cd Code
$ mkdir cs_782 && cd cs_782

# 获取数据文件
$ wget http://labfile.oss.aliyuncs.com/courses/782/data.zip

# 解压data压缩包并且删除该压缩包
$ unzip data.zip 
$ rm -r data.zip

在data文件夹中,包含了2015~2016年的NBA数据T,O和M表,及经处理后的常规赛和挑战赛的比赛数据2015~16result.csv,这个数据文件是我们通过在basketball-reference.com的2015-16 Schedule and result的几个月份比赛数据中提取得到的,其中包括三个字段:

4.2 代码实现

在Code\cs_782目录下,创建prediciton.py开始实验。 首先插入实验相关模块:

# -*- coding:utf-8 -*-
import pandas as pd
import math
import csv
import random
import numpy as np
from sklearn import cross_validation, linear_model

设置回归训练时所需用到的参数变量:

# 当每支队伍没有elo等级分时,赋予其基础elo等级分
base_elo = 1600
team_elos = {} 
team_stats = {}
X = []
y = []
folder = 'data' #存放数据的目录

在最开始需要初始化数据,从T、O和M表格中读入数据,去除一些无关数据并将这三个表格通过Team属性列进行连接:

# 根据每支队伍的Miscellaneous Opponent,Team统计数据csv文件进行初始化
def initialize_data(Mstat, Ostat, Tstat):
    new_Mstat = Mstat.drop(['Rk', 'Arena'], axis=1)
    new_Ostat = Ostat.drop(['Rk', 'G', 'MP'], axis=1)
    new_Tstat = Tstat.drop(['Rk', 'G', 'MP'], axis=1)

    team_stats1 = pd.merge(new_Mstat, new_Ostat, how='left', on='Team')
    team_stats1 = pd.merge(team_stats1, new_Tstat, how='left', on='Team')
    return team_stats1.set_index('Team', inplace=False, drop=True)

获取每支队伍的Elo Score等级分函数,当在开始没有等级分时,将其赋予初始base_elo值:

def get_elo(team):
    try:
        return team_elos[team]
    except:
        # 当最初没有elo时,给每个队伍最初赋base_elo
        team_elos[team] = base_elo
        return team_elos[team]

定义计算每支球队的Elo等级分函数:

# 计算每个球队的elo值
def calc_elo(win_team, lose_team):
    winner_rank = get_elo(win_team)
    loser_rank = get_elo(lose_team)

    rank_diff = winner_rank - loser_rank
    exp = (rank_diff  * -1) / 400
    odds = 1 / (1 + math.pow(10, exp))
    # 根据rank级别修改K值
    if winner_rank < 2100:
        k = 32
    elif winner_rank >= 2100 and winner_rank < 2400:
        k = 24
    else:
        k = 16
    new_winner_rank = round(winner_rank + (k * (1 - odds)))
    new_rank_diff = new_winner_rank - winner_rank
    new_loser_rank = loser_rank - new_rank_diff

    return new_winner_rank, new_loser_rank

基于我们初始好的统计数据,及每支队伍的Elo score计算结果,建立对应2015~2016年常规赛和季后赛中每场比赛的数据集(在主客场比赛时,我们认为主场作战的队伍更加有优势一点,因此会给主场作战队伍相应加上100等级分):

def build_dataSet(all_data):
    print("Building data set..")
    X = []
    skip = 0
    for index, row in all_data.iterrows():

        Wteam = row['WTeam']
        Lteam = row['LTeam']

        #获取最初的elo或是每个队伍最初的elo值
        team1_elo = get_elo(Wteam)
        team2_elo = get_elo(Lteam)

        # 给主场比赛的队伍加上100的elo值
        if row['WLoc'] == 'H':
            team1_elo += 100
        else:
            team2_elo += 100

        # 把elo当为评价每个队伍的第一个特征值
        team1_features = [team1_elo]
        team2_features = [team2_elo]

        # 添加我们从basketball reference.com获得的每个队伍的统计信息
        for key, value in team_stats.loc[Wteam].iteritems():
            team1_features.append(value)
        for key, value in team_stats.loc[Lteam].iteritems():
            team2_features.append(value)

        # 将两支队伍的特征值随机的分配在每场比赛数据的左右两侧
        # 并将对应的0/1赋给y值
        if random.random() > 0.5:
            X.append(team1_features + team2_features)
            y.append(0)
        else:
            X.append(team2_features + team1_features)
            y.append(1)

        if skip == 0:
            print X
            skip = 1

        # 根据这场比赛的数据更新队伍的elo值
        new_winner_rank, new_loser_rank = calc_elo(Wteam, Lteam)
        team_elos[Wteam] = new_winner_rank
        team_elos[Lteam] = new_loser_rank

    return np.nan_to_num(X), y

最终在main函数中调用这些数据处理函数,使用sklearn的Logistic Regression方法建立回归模型:

if __name__ == '__main__':

    Mstat = pd.read_csv(folder + '/15-16Miscellaneous_Stat.csv')
    Ostat = pd.read_csv(folder + '/15-16Opponent_Per_Game_Stat.csv')
    Tstat = pd.read_csv(folder + '/15-16Team_Per_Game_Stat.csv')

    team_stats = initialize_data(Mstat, Ostat, Tstat)

    result_data = pd.read_csv(folder + '/2015-2016_result.csv')
    X, y = build_dataSet(result_data)

    # 训练网络模型
    print("Fitting on %d game samples.." % len(X))

    model = linear_model.LogisticRegression()
    model.fit(X, y)

    #利用10折交叉验证计算训练正确率
    print("Doing cross-validation..")
    print(cross_validation.cross_val_score(model, X, y, cv = 10, scoring='accuracy', n_jobs=-1).mean())

最终利用训练好的模型在16~17年的常规赛数据中进行预测。 利用模型对一场新的比赛进行胜负判断,并返回其胜利的概率:

def predict_winner(team_1, team_2, model):
    features = []

    # team 1,客场队伍
    features.append(get_elo(team_1))
    for key, value in team_stats.loc[team_1].iteritems():
        features.append(value)

    # team 2,主场队伍
    features.append(get_elo(team_2) + 100)
    for key, value in team_stats.loc[team_2].iteritems():
        features.append(value)

    features = np.nan_to_num(features)
    return model.predict_proba([features])

在main函数中调用该函数,并将预测结果输出到16-17Result.csv文件中:

#利用训练好的model在16-17年的比赛中进行预测
    print('Predicting on new schedule..')
    schedule1617 = pd.read_csv(folder + '/16-17Schedule.csv')
    result = []
    for index, row in schedule1617.iterrows():
        team1 = row['Vteam']
        team2 = row['Hteam']
        pred = predict_winner(team1, team2, model)
        prob = pred[0][0]
        if prob > 0.5:
            winner = team1
            loser = team2
            result.append([winner, loser, prob])
        else:
            winner = team2
            loser = team1
            result.append([winner, loser, 1 - prob])

    with open('16-17Result.csv', 'wb') as f:
        writer = csv.writer(f)
        writer.writerow(['win', 'lose', 'probability'])
        writer.writerows(result)

运行prediction.py:

生成预测结果文件16-17Result.csv文件:

五、总结

在本节课程中,我们利用Basketball-reference.com的部分统计数据,计算每支nba比赛队伍的Elo socre,和利用这些基本统计数据评价每支队伍过去的比赛情况,并且根据国际等级划分方法Elo Score对队伍现在的战斗等级进行评分,最终结合这些不同队伍的特征判断在一场比赛中,哪支队伍能够占到优势。但在我们的预测结果中,与以往不同,我们没有给出绝对的正负之分,而是给出胜算较大一方的队伍能够赢另外一方的概率。当然在这里,我们所采用评价一支队伍性能的数据量还太少(只采用了15~16年一年的数据),如果想要更加准确、系统的判断,有兴趣的你当然可以从各种统计数据网站中获取到更多年份,更加全面的数据。结合不同的回归、决策机器学习模型,搭建一个更加全面,预测准确率更高的模型。在kaggle中有相关的篮球预测比赛项目,有兴趣的同学可尝试一下。

六、参考阅读

七、课后习题

本次课程中,我们只是利用了scikit-learn提供的Logisitc Regression方法进行回归模型的训练,你可否尝试scikit-learn中的其他机器学习方法,或者其他类似于TensorFlow的开源框架,结合我们所提供的数据集进行训练。若采用Scikit-learn中的方法,可参看实验楼的课程:ebay在线拍卖数据分析。或是结合下图进行模型的尝试:

本教程的完整步骤、代码及在线练习地址:NBA常规赛结果预测——利用Python进行比赛数据分析(更多课程请查看全部 - 课程 - 实验楼